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Abstract—In this report, we describe a data analysis tool
developed for decoding and analyzing vehicle data obtained from
a passenger vehicle’s onboard controller area network (CAN)
bus. The tool developed in this paper provides a timeseries
framework to perform domain-specific analysis at scale when
interpreting data from a vehicle or a collection of vehicles
in light of how to design intelligent vehicle applications. The
tool, called Strym, exploits the CAN bus mechanism of modern
vehicles to capture data using commercially available CAN-to-
USB hardware Comma.ai Panda devices, managed through open-
source software Libpanda. Strym permits the decoding of vendor-
specific CAN messages in a vehicle-agnostic manner. Through
this, a researcher can characterize data throughput, assess data
quality, and perform analyses. Such analyses are useful in a
number of research such as studying human driving behavior in
mixed-autonomy, new driver models, rare-event detection, traffic
flow estimation, and custom control of vehicles.

I. INTRODUCTION

The emergence of advanced driving assistance systems and
automation beyond SAE (Society of Automotive Engineers)
Level II [1] on passenger vehicles are encouraging researchers
in academia and industry to solve transportation problems
using these new features. One such use of automated vehicle
technology is to influence bulk traffic flow for energy effi-
ciency and traffic throughput by a sparse number of automated
vehicles [2, 3, 4, 5]. Advancements in vehicle autonomy in
the era of the DARPA Grand Challenge [6, 7, 8] were made
possible through research testbeds that depended on high-cost
sensors and customized actuators on modified vehicle plat-
forms. As continued investments into autonomy frameworks
matured, levels of autonomy such as those defined by SAE
began to lay the groundwork for incremental advancements
in technology. Actuation algorithms currently on passenger

vehicles might not permit full autonomy, but in many cases,
sensors such as radars and cameras are at least as sophisticated
as the sensors used in early autonomy demonstrations.

Through the industry standard Controller Area Network
(CAN) bus, sensors on modern vehicles are interconnected
with one another along with advanced actuators that carry
out the control of the vehicle when in operation. From a
research perspective, the wide availability of vehicles with
these advanced sensing capabilities provides an opportunity
to explore data from the platforms. These opportunities may
include research into how drivers use advanced features, the
development of new intelligent driver models, gathering or
identification of rare events, prediction of traffic state, and
other kinds of research.

However, each vehicle manufacturer utilizes their own
encoding of local network information into the CAN bus on
their vehicles. In order to explore the behavior of vehicles
at scale, or to develop manufacturer-independent algorithms
that analyze data from an array of vehicles, new algorithms
and architectures are needed. These approaches could provide
quality checks, post-processing algorithms and metrics, and
joint analyses with additional modalities such as GPS data
from augmented sensors, in a vendor-agnostic manner.

This paper describes an open-source software package,
Strym, which provides libraries for real-time data logging,
file-based data analysis, asynchronous and interleaved message
processing, and domain-specific visualization of vehicle data.
Strym is designed to support CAN bus messages from multiple
makes and models in a vendor-agnostic manner. Such a design
allows us to look at a broader set of vehicle data to answer
questions related to driving behavior, rare event discovery,



motion planning, control decisions, observer design, estima-
tion algorithms, etc. Strym also facilitates posthoc analyses of
controllers using CAN messages after conducting the driving
experiments. At the end of the paper, we provide use-cases
where we used Strym for validation of vehicle’s state such
relative velocity, estimation of leader car’s velocity, charac-
teristics of a driver, and exploring CAN data for additional
vehicle-related information.

Contribution

The purpose of this work is to describe how Strym enables
downstream analyses of CAN bus vehicle data obtained from
onboard sensors along with a few other modalities such as
GPS data. Analyses of CAN messages from vehicles further
contribute to the understanding of human-driving behavior
in an array of driving conditions, vehicle-to-vehicle (V2V)
interaction, developing novel mathematical models of driv-
ing under varying spatiotemporal conditions, and low-cost
feedback vehicle control applications. We first describe an
overview of the CAN bus in Section II. Next, in Section III,
we provide a data quality assessment of CAN messages
with Strym. In sections IV-VII, we discuss Strym python
package and its various modules in detail. In Section VIII,
we provide some use cases that enabled analysis of driving
behavior, established relationships between various signals,
and performed some operations needed for the data-driven
development of autonomous vehicle control. We end the paper
with a discussion and conclusion in Section IX.

II. OVERVIEW OF CAN BUS MESSAGES

Most modern cars use either a CAN bus, or a time-
triggered bus such as FlexRay [9] to transmit data between
Electronic Control Units (ECUs). These vehicle data adopt a
CAN protocol for encoding vehicle sensor reading such as
vehicle speed, accelerometer, fuel rate, gas pedal, and throttle
in addition to less safety-critical messages such as status of
window-panes, brake lights, etc. In recent years, car-makers
introduced several onboard sensors for driving assistance [10]
and safety measures such as anti-lock brake systems, airbags,
lane-keeping assistance, etc. that use CAN bus for communica-
tion and control. On-board vehicle sensors may be augmented
with additional modalities such as dashcam, radar, wearable
devices [11] for personal or research use. Vehicle data from
multiple modalities allows for new efforts to develop novel
models for traffic behavior at different geographical locations
and time points, as well as what factors are consequential of
human driving behavior [12].

CAN bus was introduced by Bosch at the SAE conference
in 1986 [13]. In 2012, Bosch released CAN with Flexible
Data-Rate 1.0 (CAN FD) which can achieve 5 Mbps in
practice and has a 64-byte payload compared to 8 bytes in
the initial CAN specification. The CAN bus was initially
used for ECUs and emission tracking, but in recent years
additional features such as the Advanced Driving Assistance
System (ADAS) have made use of CAN to listen to radar
proximity data and send control commands to regulate throttle

and braking [14]. In addition to that, features such as Lane-
Keeping Assist (LKA) are used to operate steering torque
which leverages CAN buses [15]. CAN messages captured
from vehicles vary in encoding, and per manufacturer, make,
model and year. As per CAN protocol, messages are prioritized
based on IDs. A standard CAN message packet structure is
shown in Figure 1.

1 bit
11 bits 

or 
29 bits

1 bit 6 bits 0 - 64 bits 16 bits 2 bits 7 bits

Start of
Frame
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Remote
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Request

Control

Message
Data

Cyclic  
Redundancy

Check

ACK

End of Frame

Fig. 1: Packet structure of a standard CAN message. The first part
consists of 1 bit that denotes the start of the packet frame. It is a
dominant 0 that tells other ECUs that a message is coming. The
second part, either 11 bits for CAN 2.0A or 29 bits for CAN 2.0B,
is used for message identifier, lower identifier means higher priority.
For our cars, only 11-bit identifiers are used. Remote transmission
request consists of 1 bit; it is meant for allowing ECUs to request
messages from other ECUs. The control consisting of 6 bits contains
the Identifier Extension Bit (IDE) which is a ‘dominant 0’ for 11-bit.
It contains the 4-bit Data Length Code (DLC) and specifies the length
of the data bytes to be transmitted (0 to 8 bytes). The actual message
being transmitted varies from 0 to 64 bits. Cyclic Redundancy Check
(CRC) consisting of 16 bits ensures data integrity. The ACK indicates
that the CRC process is okay and ECU has received the message
correctly. The last 7 bits mark the end of the CAN message.

For a given vehicle with the manufacturer, make, and
year, the definition of each CAN message signal is defined in
Vehicle’s CAN Database called as DBC file which is a plain
text file with file extension .dbc. The DBC file contains a
recipe on how to decode CAN messages. Once decoded, CAN
messages open a new avenue for understanding human driving
behavior in a wide range of traffic conditions and developing
vehicle applications. Considering connected vehicles as a
cyber-physical system, the vehicle data needs to adhere to
three quality standards: (i) data rate, (ii) timeliness, and (iii)
synchronization. In 2016, we conducted a field experiment
with 22 cars to understand the phenomenon of phantom traffic
jams [2]. Each vehicle was outfitted with an OBD-II style
interface based on the ELM-327, an OBD-II interpreter to
measure fuel consumption and velocity. Although data analysis
from OBD-II data would be trivial, data obtained from OBD-
II devices was of poor quality with low data rate and coarser.
Hence, additional modalities – 360 camera and LiDAR were
used to obtain high-frequency velocities and observe emergent
traffic waves. While it was possible to extrapolate OBD-II and
synchronize them with camera data, significant efforts were
needed for post-processing to make inferences. Further, signals
captured through OBD-II were limited to a few measurements
such as speed, fuel rates, and acceleration. All of these would
have been avoided with off-the-shelf technology such as direct
consumption of CAN bus messages.



III. CAN DATA QUALITY CHECK WITH STRYM

We used a commercially available hardware device from
Comma.ai to capture CAN messages from a vehicle on the
USB port of a computer [16]. Data capture must go beyond
bulk downloads in order to permit feedback control, so it
is important to understand data throughput and quality if
acquired in real-time.

Strym provides tools that assess the quality of the data
capture, which is important for research applications in data
science and machine learning. Through bulk downloads with
Python drivers, CAN message recording dropped approxi-
mately 75% of messages. Figure 2 shows the data capture
quality.

Fig. 2: Data health check done with Strym for CAN bus messages
captured using Python library. From data-rate histogram (top-left)
and time-diffs plot (bottom-left), we see inconsistency in arrival of
messages, where 75% of data-packets were being dropped. A boxplot
of data-rate shows a broader inter-quartile range of 25.03 which
is non-ideal for applications such as determining dynamics of the
vehicle.

As a result, we developed a high-speed data capture library
called Libpanda [17] in C/C++ with low-level APIs such
as libusb to boost the performance and data rate. By using
Libpanda, we were able to drastically reduce CPU usage.
With our efficient implementation, we captured high-quality
CAN data along with GPS data at 35% CPU usage, and
with twice the throughput of data collection observed with
Python. These tests were performed on a Raspberry Pi 4 (4
GB RAM). A similar data-health check on CAN bus data
captured via Libpanda library is shown in Figure 3. We find
out that the quality of data in terms of data rate, timeliness, and
synchronization was superior to that obtained using the Python
library. Since data are gathered through Libpanda’s real-time
interface, analysis of the quality of the data are done on the
static recorded files, and not in real-time. We provide further
detail on Strym and how it has helped us in getting a better
understanding of vehicle data to come up with strategies for
vehicle application development.

IV. PROGRAMMING INTERFACE IN STRYM

As discussed in Section II, CAN messages have a specific
structure with some messages having standard encoding and
some with proprietary encoding. Libpanda records raw CAN

Fig. 3: Data health check done with Strym for CAN bus messages
captured using Libpanda’s C++ library. From data-rate histogram
(top-left) and time-diffs plot (bottom-left), we see consistent data-
rate. A boxplot of data-rate shows inter-quartile range of 0.49 which
further supports the evidence of good-quality data.

bus data and GPS in CSV format. Raw CAN data in CSV
format consists of the following columns: Time, Message-
ID, Message in hex, Bus ID, and Message Length. One such
example is shown in Figure 4. Each message further consists

Fig. 4: A set of encoded CAN messages acquired through Libpanda.

of several signal components. For example, message ID 384-
399 is for radar traces in Toyota RAV4 with Toyota safety
package. Radar traces further consists of signal components
such as longitudinal distance, lateral distance, relative velocity,
and checksum for objects being tracked by onboard radar. A
specific DBC rule to decode a message for Toyota RAV4 is
shown in Figure 5. More information can be added in the DBC
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0 for big endian 
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Fig. 5: A recipe in DBC file to decode a message received from CAN
bus.

file such as description, enumeration types, and additional
comments. Strym uses the DBC file and CSV-formatted CAN



message file as inputs to decode messages. Decoded messages
are produced as timeseries data representing specific signals
such as speed, acceleration, brake, lead distance, etc. A com-
plete workflow from setting up hardware and logging CAN
messages using Libpanda to decoding them as timeseries, data
analysis, and visualization is shown in Figure 6.

Raw CAN  
Data

DBC file

Raspberry Pi 4

Strym APIs
Comma.ai

Panda Devices

Fig. 6: A workflow of CAN data capture and analysis using Strym.
CAN messages are captured using Libpanda on a Raspberry Pi
connected to the Comma.ai Panda device. The captured messages
are decoded after the completed drive, using Strym, for further
downstream analyses.

Once messages are decoded using the DBC file, further
processing and analyses are based on interpretation of the
signals as timeseries data, with a Time column and a Message
column. Even though the CAN bus promises a fixed data rate
for messages, due to hardware and software latency, captured
messages have variable data rates around the promised mean
data rate. Besides, messages received from the CAN bus
have neither uniform sampling time nor equal latency due
to the asynchronous nature of some signals, and the runtime
priorities of ECUs on the bus. As a result, any statistical
analysis involving more than one signal component requires
further processing of data before it can be suitably used for
assessment, visualization, and further vehicle control. In the
next few paragraphs, we discuss various utilities provided by
Strym to empower transportation data scientists and engineers
to leverage CAN technology for a number of research projects.

A. Modules in Strym
Strym adopts an object-oriented paradigm with abstract

concepts split into multiple classes. Strym version 0.4.13
consists of following modules: (i) strymread (ii) strymmap
(iii) phasespace (iv) meta (v) dashboard (vi) tools. Strymread
module consists of strymread class that aggregates features
and methods to allow reading, post-processing, and visualizing
CAN data. Strymmap module provides strymmap class that
allows reading and visualizing GPS data. Phasespace module
provides tools for two-dimensional phasespace analysis of
timeseries signals using phasespace class. In addition,
Strym also provides metadata generation through meta and
dashboard class. Tools modules provide procedures to
house some commonly used algorithms for extending data-
engineering tasks. A user can install Strym with the command
pip install strym.

B. Reading CAN Bus Data Using strymread

Strym provides a high-level class called strymread to
read raw CAN data. The encoded data from the data file can be

read through the attribute dataframe. Further, if a reading of
the CSV file fails for reasons such as an empty file, corrupted
file, or wrong filename, etc. then the object attribute success
can be used to check for failure/success of reading the CSV
file.

strymread allows reading certain vehicle information
in a vehicle-agnostic manner. To provide vehicle agnostic
decoding, we provide a dictionary-mapping through
topic2msgs routine. As the DBC file is not standardized,
we create dictionary and naming conventions at the software
level. While saving the captured CAN data from the
vehicle, Libpanda follows the standard convention for
data file names that include a timestamp of recording,
vehicle’s VIN number [18], and the modality of the data
such as CAN or GPS. An example of such file name
is 2020-05-19-12-56-13_JTMYF4DV1AD018936
_CAN_Messages.csv that includes a timestamp in GMT,
a VIN, and the word CAN to inform the user that it includes
CAN messages. For the legacy reason, if the data file doesn’t
provide a VIN then strymread defaults to a Toyota RAV4
encoding-decoding scheme. A user can also supply its own
DBC file with an additional argument dbcfile while
instantiating strymread objects. To create a dictionary,
we add a new message/signal pair to a topic of interest
(e.g. speed of the vehicle). For example, the Toyota RAV4
speed is found in CAN message with ID 180 and signal
ID 1 but for Honda Pilot, the speed is in message ID 344
with signal name XMISSION_SPEED. The constructor of
strymread initializes dictionary entries that can be queried
at runtime to get the correct message/signal pair for the DBC
file corresponding to the message file. Abstraction of the
appropriate message/signal pair allows researchers to extract
valid data in a vehicle agnostic manner. topic2msgs takes
the topic name as input which returns suitable message/signal
pair using dictionary entries. This redirection provides
robustness to Strym as DBC files are not standardized.

As of version 0.4.13, strymread supports decoding
CAN data for two vehicle models: Toyota RAV4 2019, Toyota
RAV4 2020, and Honda Pilot 2020. We are working to add
support for other models as our requirement grows. In addition
to vehicle-agnostic methods, strymread also provides a
routine to retrieve data with specific message-signal ID/name
pair. Appendix A-B, and A-C provide code-snippets on the
above use cases. Each vehicle message is returned as pandas
timeseries data frame with two columns: Time and Message.

C. Data Quality Assessment with strymread

One big concern while working with Cyber-Physical Sys-
tems is data quality. Although we earlier motivated Libpanda
as a tool to capture high-quality data, there are still reasons to
assess data quality in order to understand environmental and
deployment challenges when using tools such as Libpanda.
strymread provides method ranalyze for data-health
check in the form of rate histogram, rate boxplot, timeseries
plot of time-diffs (difference of two consecutive timestamps),
and timeseries plot of instantaneous frequency. Rate histogram



provides a distribution of the rate at which each data point for
a particular topic such as speed was captured. In an ideal case,
we expect the rate histogram to be a narrow peak with one bar.
Further, for high-quality consistent timeseries data, the boxplot
of data rate would be extremely narrow with an interquartile
range close to zero. For such cases, time-diffs should be a
straight line parallel to the x-axis. These differences can be
observed in Figures 2 and 3 where high-quality consistent data
was captured with Libpanda as compared to when data was
captured using Python.

D. Mathematical Operations with strymread

To perform mathematical operations involving more than
one CAN bus signal, we require additional steps. The addi-
tional steps involve resampling of CAN bus signals so that
each signal consists of message values at the same timestamp.
This step is necessary as multiple signals such as relative
velocity, radar traces, and acceleration have different data-rate
and sampling time is not uniform. Using multiple signals, we
can perform a joint analysis that may lead to better decision-
making and prediction models. strymread provides wrap-
per functions for resampling and synchronization of multiple
timeseries data. Time synchronization of two timeseries data
requires finding common timestamps for all data points. We
provide ts_sync function for time synchronization of two
timeseries data. ts_sync provides additional options such as
desired sampling rate using rate argument and method used
for interpolation using method argument. As of writing this
paper, strymread supports cubic interpolation, and sample-
and-hold interpolation with options method=‘cubic’ and
method=‘nearest’ similar to one supported by Scipy
package [19]. In an upcoming release, we are planning to
add support for additional interpolation methods such as
Lowess and Gaussian Kernel. In addition to timeseries syn-
chronization, an individual timeseries can be resampled us-
ing strymread.resample method that uses interpolation
techniques from Scipy [19] based on the desired sample-
time. In addition, we also provide an alternative method of
interpolation based on an autoencoder technique [20] that uses
a neural network to overfit data samples on dense time-points.
These steps are illustrated in Figure 7.

We further provides methods for integrating and differenti-
ating timeseries data using strymread.differentiate
and strymread.integrate functions that take a time-
series data as an argument. Additional methods include time-
shift, visualization of data distribution using violin plot, and
data-denoising.

V. READING GPS DATA WITH STRYMMAP

Comma.ai Panda devices provide GPS data in addition to
capturing CAN bus messages. The GPS module of Libpanda
reports National Marine Electronics Association (NMEA)
formatted strings which are reformatted as CSV files with
Columns: GPS Time in GMT, status, longitude, latitude, alti-
tude, horizontal dilution of precision (HDOP), vertical DOP,
and position DOP. A GPS reading is valid when GPS status is

Time Bus MessageID Message MessageLength

1594332992 2 145 802847d9f3000027 8

1594332992 1 145 802847d9f3000027 8

1594332992 0 145 802847d9f3000027 8

1594332992 2 420 6.61E+13 8

1594332992 1 420 6.61E+13 8

Time Message

1594332992 5

... ...

1594332992 5.056

Coded message

Time Message

1594332992 0.312

... ...

1594332992 0.31342

Time Message

1594332992 10.43

... ...

1594332992 11.453

Speed, 50 Hz

Acceleration, 10 Hz

Lead distance, 5 Hz
Decode

Time Message

1594332992 5

... ...

1594332992 5.056

Time Message

1594332992 0.312

... ...

1594332992 0.31342
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... ...

1594332992 11.453
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resample

D
ow
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Fig. 7: A data analysis pipeline for decoding CAN messages. For
joint-analysis of multiple signals, we are first required to perform
time-synchronization and resample them to a fixed sample-time. Once
resampling is done, we can perform downstream analyses such as
denoising, smoothing, training a machine learning model, and making
prediction.

set as A. We use this information to determine when a valid
GPS signal is acquired. Libpanda stores GPS data in a CSV file
with a naming convention similar to CAN bus message CSV
file except, instead of CAN, the word GPS is used which is
also useful if we want to correlate certain information obtained
from CAN buses to GPS messages. For example, we can also
measure speed from GPS data and compare the quality of
speed with one obtained from CAN buses.

strymmap produces a visualization of driving routes
based on GPS data using Mapbox service. Upon instantiation,
strymmap creates a map with a driving route overlaid in
png and HTML format. Since strymmap uses widgets,
strymmap can only be used with an ipython notebook. An
example driving route on the map is shown in Figure 8.
A code-snippet to produce GPS visualization is provided in
Appendix A-F.

Fig. 8: An example driving route using GPS data produced with
strymmap.

VI. PHASESPACE ANALYSIS WITH PHASESPACE

In dynamical system theory [21], phasespace analysis often
reveals interesting properties of a system. A visual representa-
tion of two signals on two-dimensional phasespace provides a
trajectory of the evolution of a system with respect to time or



any other dependent variable. In the two-dimensional plane,
phasespace clustering provides insight into how a system may
evolve from one state to another. With Strym’s phasespace
module, we can perform phasespace analysis. Currently, clus-
tering quality assessment of phasespace is supported through
phasespace but we are in the process of adding more
methods to support several different applications related to
the study of a dynamical system. An example of a phasespace
plot for the velocity-acceleration curve is shown in Figure 9.
A code snippet to reproduce the phasespace plot is provided
in Appendix A-G.

Fig. 9: An example phase space plot for velocity-acceleration curve
that uses messages from CAN buses is shown with time as colormap.
Speed is shown in m

s , while acceleration is shown in m
s2 .

VII. ADDITIONAL TOOLS IN STRYM

In addition to strymread, strymmap, and
phasespace modules, Strym provides tools for gathering
metadata about driving from a list of files, finding a subset
of data with common characteristics, finding appropriate
timeshift between two CAN datasets obtained from two
vehicles following each other—both fitted with Panda
devices, Raspberry Pi4 and Libpanda library. Further, we also
provide plotting libraries based on matplotlib [22] for quick
visualization of CAN messages as timeseries. Up-to-date
documentation on Strym API and tutorials can be found
on [23].

VIII. USE CASES

A. Relationship between Signals

We performed vehicular data analysis to gain a number of
insights in identifying anomalous events, traffic flow estima-
tion, designing controllers and choosing suitable parameters.
By aggregating CAN data from multiple drives, we were able
to visualize a relationship between steering angle in degree vs
speed for Toyota RAV4 in km

h shown in Figure 10. The figure
indicates that usually driving maneuvers have a low steering
angle at higher speed under normal driving conditions. With
such an insight, an anomalous case can be detected where the
driver tries to maneuver at a large steering angle at a higher
speed.

B. Estimation and Validation of a Signal

Front-facing radar provides an instantaneous estimation
of lead vehicle relative velocity and distance. We performed
a coordinated two-vehicle test while recording data from

Fig. 10: Relationship between steering wheel angle, in degrees, and
speed in km

h for a Toyota RAV4 aggregated over 450 km of driving.

the lead vehicle (a Honda Pilot) and a following vehicle
(Toyota Rav4). Strym provided a means to validate the rel-
ative speed measurement obtained from the rear vehicle by
constructing lead speed and comparing it to the recorded
speed from the lead car. To construct the leader’s velocity, we
first differentiated the lead distance signal to obtain relative
speed where the differentiated signal was smoothed using an
AutoEncoder interpolation technique [20]. A comparison of
actual lead speed and reconstructed leader speed is shown
in Figure 11. This use case is suitable for the case where
a vehicle controller’s purpose is to follow a human-driven
car. Such a controller needs to have a good estimation of the
leader’s velocity in absence of inter-vehicle communication
to minimize estimation error for safety and fulfilling other
objectives.

Fig. 11: Leader’s velocity estimation using CAN messages from
follower car using Autoencoder based interpolation provided by
Strym package.

C. Obtaining Insights on Driving Behavior

In another use case, we analyzed the aggregated data
from multiple drives to study the distribution of the maximum
and minimum acceleration from driving data performed by a
specific user. The knowledge of maximum/minimum acceler-
ation was used for training of a reinforcement learning-based
controller for vehicle control [24]. Histogram of maximum
and minimum accelerations observed across all driving dataset



is shown in Figure 12 and Figure 13. We found out that
maximum acceleration for a vehicle never crossed beyond 5 m

s2

and minimum acceleration stayed below −6 m
s2 under normal

driving conditions. These were used as bounds for training a
reinforcement learning controller for longitudinal motion as
described in the paper [24].

Fig. 12: Distribution of minimum acceleration found from each drive
collected over the span of 10 months from the same vehicle by the
same driver. Histogram is plotted with bin size of 20.

Fig. 13: Distribution of minimum acceleration found from each drive
collected over the span of 10 months from the same vehicle by the
same driver. Histogram is plotted with bin size of 20.

D. Multi-modal Analysis to Search for an Unknown Signal

In a different kind of use case, we sought to find out
a correlated signal from the CAN bus given ground truth
data. Particularly, we were interested in finding fuel usage
information to train a reinforcement-learning controller [24].
The objective of such a controller is to optimize fuel usage
while autonomously controlling a vehicle. To carry out the
exercise of identifying fuel information, we piggybacked our
CAN data collection with data collection from the Toyota
Techstream device. Toyota Techstream provides fuel usage
which can be used to perform correlation with a guessed
message/signal ID from the CAN bus. However, the use of
Techstream for obtaining fuel usage is not scalable as the
device itself is costly. Further, when Techstream is in use, the
vehicle doesn’t allow control inputs for autonomous control.

The problem of finding fuel information was broken down
into two parts: (1) finding the correct time-shift between
Techstream data and CAN data using a common signal present

in both modes; (2) finding a signal in CAN data that has
a maximum correlation with fuel data obtained from Tech-
stream. We were required to find time-shift because Tech-
stream and CAN bus captured data independently of each other
with their own clock. Further, the issue of calculating time-
shift becomes non-trivial as Techstream needs to be restarted
after a certain duration while CAN data capture doesn’t get
interrupted under normal operation. Hence entirety of CAN
data may not have a one-to-one match with Techstream data.
We identified that speed signal was present in both modes
and was used for finding time-shift using strymread’s
time_shift function. Identified time-shift was applied to
the time-axis of CAN data and then correlation was performed
with candidate message/signal from CAN data with fuel usage
from Techstream. Figure 14 provides a plot demonstrating
automatic alignment of speed data from two modes. The output
of time_shift function is a time-shift in seconds that can
be globally applied to one of the two modes. In the next
step, we performed a correlation of Techstream’s fuel data
for the duration that is common in both modes with candidate
message/signal ID (called Proxy). We were able to identify that
message ID 865 provides data maximally correlated with Tech-
stream’s fuel data as shown in Figure 15. The use of message
865 for fuel rate was previously unknown to the open-source
community.

Fig. 14: An automatic alignment of speed data obtained from two
modes: Techstream Device and CAN bus. Alignment can be per-
formed even if only a portion of data matches from both modes.

Fig. 15: Proxy CAN message 865 maximally correlate with Tech-
stream Fuel Data.

IX. DISCUSSIONS AND FUTURE PROSPECTS

The need for Strym arose from having software tools
that provide a standard way of dealing with timeseries data
obtained from multiple modalities such as modern vehicle
CAN buses, GPS, LiDAR, radar, cameras, etc. Currently, there



is neither a standard way of storing, analyzing, and post-
processing vehicular data from multiple modalities nor there
is a benchmark in terms of fusing multi-modal vehicular data.
This paper is an attempt to provide an open-source software
tool for analyzing multi-modal data but also an attempt in
the direction of setting the standard on how to gather, store
and analyze vehicular data. Currently, Strym operates only on
CAN bus messages and GPS data but we are moving in the
direction of combining vehicular data from other modalities
such as dashcam, LiDAR, and other augmented sensors. Such
multi-modal data has potential in areas such as improving
autonomous vehicle control, studying human driving behavior
for novel insights, and creating new traffic flow theories.

X. SOURCE CODE

Source code for Strym is available at https://github.com/
jmscslgroup/strym under the MIT license.
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APPENDIX A
EXAMPLE CODE-SNIPPETS

A. Reading CAN data

1 from strym import strymread
2 cancsvfile = "2020-05-19-12-56-13_JTMYF4DV1AD018936_CAN_Messages.csv"
3 r =strymread(csvfile=cancsvfile)
4 if r.success:
5 print("Encoded CAN bus dataframe is:\n")
6 print(r.dataframe)

B. Retreiving Trip Data

1 r.count() # produces the histogram of message counts per message ID
2 all_msg_ids = r.messageIDs() # get the list of all message IDs available in captured csv file
3 f = r.frequency() # retrieves frequency & relevant statistics of each message in captured csv file
4 st = r.start_time() # Get the start time of the capture
5 et = r.end_time() # Get the end time of the capture
6 tp = r.triptime() # total duration of the captured csv file
7 tl = r.triplength() # returns total distance travelled while logging CAN data.

C. Access Vehicle Data in Timeseries Format

Using vehicle-agnostic functions:

1 import numpy
2 speed = r.speed() # returns speed with SI unit as per DBC file
3 accelx = r.accelx() # returns acceleration in longitudinal direction
4 accely = r.accely() # returns acceleration in lateral direction
5 steer_torque = r.steer_torque() # returns steering torque
6 yaw_rate = r.yaw_rate() # returns yaw rate
7 steer_rate = r.steer_rate() # returns steering rate
8

9 # Returns longitudinal distance of track ID from 0 to 15
10 long_dist = r.long_dist(track_id = numpy.arange(0, 16))
11

12 # Returns lateral distance of track ID from 0 to 4
13 lat_dist = r.lat_dist(track_id = numpy.arange(0, 5))
14

15 # Returns relative velocity of each track with ID from 0 to 4
16 relative_vel = r.rel_velocity(track_id = numpy.arange(0, 5))
17

18 # Returns ACC state of the vehicle
19 acc_state = r.acc_state()

Using vehicle-specific message IDs:

1 # get_ts function can take two arguments:
2 ## msg name or ID, and signal name or ID
3 ## Usually it is easy to infer msg name and
4 ## signal name from DBC file
5

6 msg869 = r.get_ts(msg=869, signal=6)
7 msg869 = r.get_ts(msg="DSU_CRUISE", signal=6)
8 msg869 = r.get_ts(msg="DSU_CRUISE", signal="LEAD_DISTSNCE")

D. Assessing Quality of Data

1 from strym import strymread
2 cancsvfile = "2020-05-19-12-56-13_JTMYF4DV1AD018936_CAN_Messages.csv"
3 r =strymread(csvfile=cancsvfile)
4 speed = r.speed()
5 strymread.ranalyze(speed, title ="MessageID 180", savefig=True)

E. Time-Synchronization of Two Signals

1 from strym import strymread
2 cancsvfile = "2020-05-19-12-56-13_JTMYF4DV1AD018936_CAN_Messages.csv"
3 r =strymread(csvfile=cancsvfile)



4 ts_yaw = r.yaw()
5 ts_speed = r.speed()
6 interpolated_speed, interpolated_yaw = strymread.ts_sync(ts_speed, ts_yaw, rate = 20, method='nearest')

F. GPS Coordinates Visualization

1 import strym
2 from strym import strymmap
3

4 # Setup API Key for Mapbox
5 # API key can be obtained from account.mapbox.com
6 key = os.getenv('MAP_BOX_API')
7 if key is None:
8 api_key = input("Enter API Key: ")
9 !echo "export MAP_BOX_API={api_key}" >> ~/.env

10

11 # Configure map properties
12 strym.config["mapheight"] = 700
13 strym.config["mapwidth"] = 1250
14 strym.config["mapzoom"] = 12.20
15

16 gpsfile = "2020-05-19-12-56-13_JTMYF4DV1AD018936_GPS_Messages.csv"
17

18 # creates a png and html file displaying driving routes
19 g = strymmap(csvfile=gpsfile)
20

21 # To plot the route directly in the ipython notebook
22 fig = g.plotroute(interactive=True)

G. Phase-space Plotting

1 import strym
2 from strym import strymread
3 from strym import phasespace
4

5 cancsvfile = "2020-05-19-12-56-13_JTMYF4DV1AD018936_CAN_Messages.csv"
6 r =strymread(csvfile=cancsvfile)
7

8 accelx = r.accelx()
9 speed = r.speed()

10 speed['Message'] = peed['Message']*0.277777778 # Convert km/h to m/s
11 re_speed, re_accelx = strymread.ts_sync(speed, accelx, rate=20)
12 ps = phasespace(dfx=re_speed, dfy=re_accelx)
13 ps.phaseplot(title='Phase-space plot of speed-acceleration', xlabel='speed', ylabel='acceleration')
14

15
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